AtmoSwing’s user documentation

Analog methods (AMs) are statistical weather forecasting methods, which use synoptic-scale predictors to search in the past for similar days to a target day in order to infer the predictand of interest, such as daily precipitation. They can rely on outputs of numerical weather prediction (NWP) models in the context of operational forecasting or outputs of climate models in the context of climate impact studies. AMs require low computing capacity and have demonstrated useful potential for application in several contexts.

AtmoSwing is open-source software written in C++ that implements AMs in a flexible way so that different variants can be handled dynamically. It comprises four modules: the Forecaster for use in operational forecasting, the Viewer to display the results, the Downscaler for climate studies, and the Optimizer to establish the relationship between predictands and predictors.

The Forecaster handles every required processing internally, such as NWP output downloading (when possible) and reading as well as grid interpolation. No external scripts or file conversion are required. The processing of a forecast requires low computing efforts and can even run on a Raspberry Pi computer. It provides valuable results, as revealed by multiple years of operational precipitation forecasting in the Swiss Alps.

The Viewer displays the forecasts in an interactive GIS environment with several levels of synthesis and detail. This provides a quick overview of the potential critical situations in the upcoming days, as well as the possibility for the user to delve into the details of the forecasted predictand and criteria distributions.

The Downscaler allows for the use of AMs in a climatic context, either for climate reconstruction or for climate change impact studies. When used for future climate studies, it is necessary to pay close attention to the selected predictors so that they contain the climate change signal.

The Optimizer implements different optimization techniques, such as a semiautomatic sequential approach, Monte Carlo simulations, and a global optimization technique using genetic algorithms. Establishing a statistical relationship between predictors and predictands is computationally intensive because it requires numerous assessments over decades. To this end, the code was highly optimized for computation efficiency, is parallelized (using multiple threads), and scales well on CPU or GPU clusters. This procedure is only required to establish the statistical relationship, which can then be used for forecasting or downscaling at a low computing cost.

Reference article: Horton, P.: AtmoSwing: Analog Technique Model for Statistical Weather forecastING and downscalING (v2.1.0), Geosci. Model Dev., 12, 2915-2940,, 2019.